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Abstract

The objective of non-commutative geometry(NCG) is to find the link between
the spectrum of operator algebra and the geometrical space. The motivation of the
study came from Gelfand-Naimark Theorem which will be the first topic of this
talk. Then, I will give the definition of Spectral Triple and I will demonstrate(for
commutative case) how this triple characterised the geometry. After that, I will
give the example of non-commutative geometry and then say a few words about the
(Fredholm) index of this spectral triple.
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1 Motivation

The motivation of non commutative geometry (NCG) came from the study of spectral
theory, in particular, the spectrum arises from C*-algebra.

1.1 Gelfand-Naimark Theorem

Definition 1.1.1. Let A be an associative Banach algebra over, C(an algebra equips
with norm and complete with respect to such norm). A is called C*-algebra if

(i). there exists the involution map, ∗ : A → A such that for any a, b ∈ A and α, β ∈ C

• (a∗)∗ = a

• (a.b)∗ = b∗.a∗

• (αa+ βb)∗ = ᾱa∗ + β̄b∗

(ii). for any a ∈ A, ||a.a∗|| = ||a||2.

If a C*-algebra is nonunital, one can add a unit element by considering A+ :=
A × C with the multiplication rule (a, λ)(b, µ) := (ab + λb + µa, λµ). This abstractly
define algebra can be identified with a concrete operator algebra B(H) through GNS
construction.

Theorem 1.1.2. (Gelfand-Naimark-Segal Construction) Any C*-algebra is isometri-
cally isomorphic to a norm closed, adjoint closed subalgebra of bounded linear operator
on Hilbert space, B(H)

The aim of this section is to provide the proof of the following theorem.

Theorem 1.1.3. (Gelfand-Naimark)
Let A be the commutative C*-algebra, then there exists a locally compact Hausdorff space
X such that A is isometrically ∗-isomorphic to the algebra of continuous function on X
denoted by, C(X).

We will go through the construction of this topological space X and prove the
Gelfand-Naimark theorem. Roughly speaking, it is construct from the spectrum of
C*-algebra.

Definition 1.1.4. For an element of C*-algebra a ∈ A (C*-algebra), the set Sp(a) =
{λ ∈ C|a−λ1 is not invertible } is the spectrum of a. The collection of these sets denoted
by Sp(A).

Definition 1.1.5. Let A be a Banach algebra (C*-algebra). A character of a ∈ A is
a non-zero homomorphism µ : A → C, which is surjective. The set of all characters
denoted by M(A).
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For an example, let Y be a locally compact space and A = C0(Y ) the algebra of
continuous functions vanishing at infinity. The evaluation map εy : f 7→ f(y) at y ∈ Y
defines a character.

One can see that µ(a) ∈ Sp(a), ∀a ∈ A. Since µ(a− µ(a)1) = 0⇒ a− µ(a)1 is not
invertible. From spectral theory, all λ ≤ ||a|| (the equality holds for self-adjoint elements)
and therefore |µ(a)| ≤ ||a||. Moreover, ||µ|| = 1 because µ(a) = µ(1 · a) = µ(1)µ(a).

Consider the weak* topology on A∗, the Banach space of bounded linear functional.
The Banach-Alaoglu theorem says that the unit ball A∗1 in A∗ is compact in weak*
topology. Therefore, we can define the Gelfand topology on M(A) by the inclusion
M(A) ↪→ A∗1.

Lemma 1.1.6. For a commutative Banach algebra A(can be non-unital), M(A) endowed
with the Gelfand topology is a locally compact space.

As I mentioned that if the C*-algebra is non-unital one can consider A+. Then
the character M(A+) = M((A) ∪ {0} is compact in weak* topology. Therefore the set
of character of non-unital C*-algebra is locally compact. Indeed, the locally compact
Hausdorff space M(A) will become the space X in GN theorem. But what about the
isomorphism?

Definition 1.1.7. Let A be a commutative Banach algebra. The Gelfand transform
of a ∈ A is the function â : M(A)→ C given by the evaluation at a

â(µ) := µ(a). (1)

The Gelfand Transformation is a map G : a 7→ â from A to C0(M(A)).

In general Banach algebra, the Gelfand transformation is not just a homomorphism
but the situation improves greatly when considering C*-algebra. If we can show that
G is isometric ∗−isomorphism then the proof of GN theorem is complete and we shall
need two more lemmas and the Stone-Weierstrass theorem to show this.

Lemma 1.1.8. Let a ∈ A be a self-adjoint element in C*-algebra. Then µ(a) ∈ R for
all µ ∈M(A).

I will skip the proof of this lemma. Note that any element of C*-algebra can be
written as the combination of self-adjoint elements a = a1 + ia2 with a1 := 1

2(a∗ +
a)+, a2 := i

2(a∗ − a). As a consequence of above theorem

µ(a∗) = µ(a1 − ia2) = µ(a)− iµ(a) = µ(a), (2)

or equivalently, â∗(µ) = â(µ). One concludes that the Gelfand transformation is a
∗−homomorphism.

Lemma 1.1.9. Let A be a commutative C*-algebra, and let λ ∈ Sp(a), a ∈ A. If λ 6= 0,
there is a character µ such that µ(a) = λ.
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The last ingredient is the Stone-Weierstrass theorem which states that, if X is a
locally compact space, and if B is a closed subalgebra of C0(X) such that

(i) for p 6= q ∈ X, there is some y ∈ B with y(p) 6= y(q)

(ii) y ∈ B vanishes identically at no point of X

(iii) B is closed under complex conjugation

Then B = C0(X)

The proof of Gelfand-Naimark theorem

The relation (2) shows that G : A → C0(M(A)) is a ∗−homomorphism. It is isometric
because for any a ∈ A

||â||2 = ||â∗a|| = ||â∗a|| = sup
|µ(a∗a)|
||µ||

= sup{λ ∈ Sp(a∗a)} = r(a∗a) = ||a∗a|| = ||a||2. (3)

The fourth equality is given by Lemma 1.1.9. The isometric property requires that
Ker(G) = 0, therefore, it is injective. Now G(A) is a subalgebra of C0(M(A)) that is
complete since A is complete and G is isometric, and therefore is closed (complete metric
space). The evaluation maps in G(A) separate the characters, do not all vanish at any
point and (2) shows that G(A) is closed under complex conjugation; G is surjective.

2 Spectral Triple

Definition 2.0.10. Let π be a representation of C*-algebra A on H as a left A-module.
A self-adjoint operator (not necessary bounded), D which is densely define on H is called
Dirac operator if,

(i). for all a ∈ A, [D, π(a)] is a bounded operator on Domain of D(thus extends to
bounded operator on H).

(ii). for all a ∈ A, π(a)(1 +D2)−1/2 is a compact operator.

The algebra, the Hilbert space and the Dirac operator are three important ingredi-
ents that define a spectral geometry, together (A,H,D) is called a spectral triple. In
particular, we are interested in a real even spectral triple

Definition 2.0.11. Let (A,H.D) be a spectral triple

i). (A,H.D) is ‘even’ if there exists a self-adjoint operator γ ∈ B(H) such that γ2 =
1, Dγ + γD = 0 and for all a ∈ A, γπ(a) = π(a)γ.
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ii). (A,H.D) is ‘real’ if there exists an operator J on H such that

J2 = ε, JD = ε′DJ. (4)

If the spectral triple is even, then we also need, Jγ = ε′′γJ . The constant ε, ε′, ε′′

can be either +1 or −1.

Since ε, ε′, ε′′ can only be {±1}, there are only 8 possible choices of real structure one
can impose on a spectral triple (bear in mind that ε′′only define for even spectral triple).

0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 - -1 - 1 - -1 -

The numbers on the top row denote KO dimension which, for the canonical triple, is
the dimension of the manifold modulo 8. In commutative spectral triple, the number
8 relates to the 8 different algebras B such that Mk(B) = Cln, a Clifford algebra on
a manifold Mn. The numbers 0-7 can be paired up with the general real spectral
triple as well, but to do that one needs to understand the correspondent between K-
theory and K-homology (KK-theory). The existence of real structure allows us to define
b0 := Jb∗J∗, b ∈ A the right action on Hilbert space. The right action needs to satisfy
the following conditions

[a, b0] = 0, (5)[
[D, a], b0

]
= 0. (6)

2.1 The canonical triple

Let (M, g) be a compact oriented Riemannian spin manifold and (C∞(M), L2(M,S), /∇)
be a canonical triple. This triple consisting of

- Algebra of smooth complex value function C∞(M),

- Hilbert space of squared integrable spinor L2(M,S),

- A Dirac operator of spinC-connection.

In addition, since M is a spinC manifold there is a natural grading operator, γ5 =
γ0γ1γ2γ3 and the Charge conjugation operator, JM of spinor (These two operator will
be important later on). Therefore the canonical triple is a real even spectral triple. One
can define a function

d /D(x, y) = sup
f
{|εx(f)− εy(f)|; f ∈ C∞(M), ||[ /∇, f ]|| ≤ 1}, (7)
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is equal to the geodesic from x to y. Note that ||[ /∇, f ]|| is the supremum norm.
To show that the function define above is indeed a geodesic, let z, y ∈M and consider

1 ≥ ||[ /∇, f ]||sup = sup
ψ 6=0

〈
[ /∇, f ]ψ, [ /∇, f ]ψ

〉1/2
〈ψ,ψ〉1/2

= sup
ψ 6=0

〈
ψ, γνγµ∇ν f̄∇µfψ

〉1/2
〈ψ,ψ〉1/2

= sup
x∈M
||∇f ||. (8)

To obtain the final equality, one need to use the fact that the operator norm of multi-
plicative operator Tfψ = fψ and the supremum norm are the same i.e. ||Tf ||op = ||f ||L∞ .
Then from Cauchy-Schwarz inequality, we have

|df | ≤ ||∇f || · ||dx|| ⇒ |
∫
df | ≤

∫
|df | ≤

∫ x

y
||dx||

⇒ sup
f
|f(x)− f(y)| ≤ inf

γ

∫
γ
dt
√
gµν ẋµẋν . (9)

The equality holds when chosen f = d(x, .)⇒ |d(x, x)− d(x, y)| = d(x, y).
Connes also showed that for any commutative spectral triple (with some addi-

tional conditions) there exists a smooth compact oriented spinc manifold X, such that
A ∼= C∞(X) [1]. It is important to note that, Connes’ distance formula is not limited on
commutative algebra but makes sense on any spectral triple. In non-commutative spec-
tral triple (A,H,D) the notion of points is replaced by the pure states and the distance
between them is given by

dD(φ, ψ) = sup{|φ(a)− ψ(a)|; a ∈ A, ||[D, a]|| < 1}, (10)

where φ, ψ characters (or pure states) of A. It should be clear now that the term NCG
is defined by the non-commutative spectral triple.

2.2 Finite spectral triple

Now we will choose A to be non-commutative algebra. Consider the matrix algebra,
which is a simple extension of commutative algebra to non-commutative

F := (AF = Mn(C),HF ,DF ) (11)

This is called Finite spectral triple. It contains the commutative case where the algebra
given by C as the centre of Mn(C). Although the finite spectral triple seems to be
a very trivial choice of NCG, the its product with the canonical has many interesting
properties:

(C∞(M,AF ), L2(M,S)⊗HF , /∇⊗ 1+ γ5 ⊗DF ). (12)
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This triple is called the Almost commutative spectral triple. As one can show that
Diff(M) ∼= Aut(C∞(M)); let φ ∈ Diff(M), then by setting αφ : f 7→ f ◦φ−1. If we define
Diff(M ×F ) := Aut(C∞(M,AF )) then one can still define αφ : a 7→ a◦φ−1 in analogous
to canonical triple. However, the automorphism is larger than before, for example, for
u ∈ C∞(M,U(AF )) one can define an automorphism:

(αu(a))(x) = u(x)Ju(x)J∗a(x), (13)

the inner automorphism. Therefore, by doing this we enlarge the symmetry of manifold
M i.e. includes the symmetry of the algebra AF such as the unitary group ⇒ gauge
symmetry, the gauge group denoted byG(M×F ) := {U = uJuJ∗|u ∈ U(AF )}. Together
one can define

β(U,φ)(a)(x) = αu(a)(φ−1(x)), (14)

where the pair (U, φ) ∈ G(M × F ) o Diff(M). The operation in semi direct product is
given by

(V, ψ)(U, φ) = (V θ(ψ)U,ψφ), (15)

where θ(ψ)U := U ◦ψ−1. This gives the full symmetry of almost commutative manifold.

2.3 Dirac operator and inner fluctuation

There are two important equivalences between spectral triple that are necessary for
the construction of gauge theory. The first one is the familiar unitary equivalence and
another is called Morita equivalence. Algebra A and B are Morita equivalent if categories
Mod(A) is equivalent to Mod(B). For commutative algebra, Morita equivalence are the
same as isomorphism between algebra but this is not true for non-commutative algebra.
Although it sounds difficult to get another algebra that is Morita equivalent to original
algebra, there is more concrete way to find one.

Theorem 2.3.1. Let A be an algebra. Another algebra B is Morita equivalent to A if
and only if B ∼= EndA(E) where E is a finitely generated projective right A-module

The notion of Morita equivalent can be extended to spectral triple. Since we already
have EndA(E) as the algebra, and a naturally choice of Hilbert space would be H′ =
E ⊗A H⊗A E0, where E0 := {ξ̄ : ξ ∈ E} is a conjugate module with the left action
defined by aξ̄ := ξa∗(the bar indicates complex conjugate), the remaining work is to
choose a Dirac operator. Suppose there exists a differential structure on A, then we can
define a connection ∇ : E → E ⊗ Ω1(A), and then one can define a Dirac operator that
preserved the tensor product over A

DA(η ⊗ ψ ⊗ ξ) = (∇η)ψ ⊗ ξ + η ⊗Dψ ⊗ ξ + η ⊗ ψ(∇ξ). (16)

From this construction it follows that if (A,H,D) is the spectral triple then the Morita
equivalent triple (B, E ⊗A H⊗AE0,DA) is also the spectral triple.

We will be interested in Morita self equivalent i.e. E = A. Therefore we have,
EndA(A) ∼= A and E ⊗A H⊗A E0 ∼= H which are the same as in the original spectral
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triple but the Dirac operator DA is different. Let us see what happen when Dirac
operator acts on Ψ ∈ H:

DAΨ = DA(1⊗ ψ ⊗ 1̄) = ∇(1)ψ ⊗ 1̄ + 1⊗Dψ ⊗ 1̄ + 1⊗ ψ∇(1)

= DΨ +AΨ− JAJ∗Ψ. (17)

The field A ∈ iΩ1(A) is a self-adjoint one-form which plays the role of gauge field.
We can check that the field A has the same transformation as the gauge field under
unitary group. Let u ∈ U(A) be an element in unitary group of algebra A and we define
U = uJu∗J∗. The change of Dirac operator in the unitary equivalent spectral triple
(A, UH, UDAU∗) implies that

Au = uAu∗ + u[D, u∗]. (18)

For physical interpretation, one can think of Morita equivalent in spectral triple as
the equivalence that allows the fluctuation of the metric. This is not just fluctuation
in Riemannian metric but the metric of spectral geometry given by Connes distance
formula.

3 Index of Dirac operator

An invariant one can obtain from spectral triple is the index of Dirac operator

3.1 Fredholm index of Dirac operator

The first problem one encounters in trying to compute the index of D is that it is not a
bounded operator, therefore, the usual definition of Fredholm operator is not applicable
to D!

Consider a subspace H1 = {ξ ∈ H|Dξ ∈ H} with inner product

〈ξ, η〉1 = 〈ξ, η〉+ 〈Dξ,Dη〉 . (19)

Observes that for ξ ∈ H1

||Dξ||2 ≤ ||ξ||2 + ||Dξ||2 = ||ξ||21. (20)

Therefore it is the bounded from H1 → H. The subspace H1 is a Hilbert space. Suppose
{ξn} ∈ H1 is a Cauchy sequence, thus ξn → ξ ∈ H. Since D is bounded on H1 ⇒
continuous i.e.

lim
n→∞

Dξn = Dξ ∈ H. (21)

Hence ξ ∈ H1. We can think of D as a bounded operator from H1 → H, Then the
definition of Fredholm operator can be applied for D on H1.
Next, in order to define the index, we need to show that this bounded operator is really
Fredholm operator. One may use the following theorem as the alternative definition of
Fredholm operators
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Theorem 3.1.1. (Atkinson’s theorem)
T ∈ B(H1,H2) is a Fredholm operator iff there exists S1, S2 ∈ B(H2,H1) and compact
operators Ki ∈ B(Hi) such that

S1T = 1H1 +K1, TS2 = 1H2 +K2. (22)

Lemma 3.1.2. Let (A,H,D) be a spectral triple. Then D is unbounded Fredholm oper-
ator.
Proof. Defines an operator

D(1 +D2)−1 : H → H1. (23)

It follows that

D · D(1 +D2)−1 = (−1 + 1 +D2)(1 +D2)−1 = 1− (1 +D2)−1 (24)

For the right approximate inverse, one chooses (1 + D2)−1D then follows the similar
calculation.

Although we manage to get a well defined index from D, it is not very useful because
D is self-adjoint → index(D) = 0. However, when (A,H,D) is even, we define

D+ =
1− γ

2
D1 + γ

2
, D+ : H+

1 → H
− (25)

Theorem 3.1.3. (McKean-Singer Formula)
Let D be an unbounded self-adjoint operator with compact resolvent. Let γ be a grading
operator which anti-commutes with D. Finally, let f(s), s ∈ R be a continuous even
function with f(0) 6= 0 and f(D) trace-class. Then D+ is Fredholm and

Index(D+) =
1

f(0)
Tr (γf (D)) . (26)

The index is independent to the choice of even function. The traditional choice is
f(s) = e−ts

2
, t > 0, so we have the operator e−tD

2
which is called the heat operator,

and then the index formula becomes

Index
(
D+
)

= Tr
(
γe−tD

2
)

= Tre−tD
+D− − Tre−tD

−D+
(27)

It requires the relation between K-theory and K-homology to prove that the index
formula also compatible with non-commutative geometry. Suppose this is true, observe
that D2

A = ∆E + F is in the form of generalised Laplacian

F =
R

4
⊗ 1+

1

2
iγµγν ⊗Bµν − 1⊗ Φ2 − iγµγ5 ⊗DµΦ (28)

For simplicity, Let Mm be a manifold without boundary, the asymptotic expansion
of heat operator is given by [6]

Tre−tD
2
A ∼

∞∑
n=0

t
n−m

2

∫
M
an(x,D2

A)dV , (29)
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where the first three non-vanishing coefficients are(all odd coefficients vanish)

a0(x,D2
A) = (4π)m/2Tr (Id) ,

a0(x,D2
A) = (4π)m/2Tr

(
F − R

6

)
,

a4(x,D2
A) =

(4π)m/2

360
Tr
(
12∆R+ 5R2 − 2(Rµν)2 + 2(Rµνρσ)2 − 60RF + 180F 2 − 60∆F + 30(ΩE

µν)2
)
,

(30)

where ΩS
µν ⊗ 1+ i1⊗Bµν is the curvature two form on the bundle.

3.2 The Standard Model of particle physics

The Bosonic action is defined by Sb := Trf
(
D2
A/Λ

2
)
. If we consider asymptotic expan-

sion of this invariant [6, 2], the spectral action becomes

Sb ∼
24

π2
f4Λ

4

∫
d4x
√
g

− 2

π2
f2Λ

2

∫
d4x
√
g

(
R+

1

2
aH̄H +

1

4
cσ2
)

+
1

2π2
f(0)

∫
dx4
√
g

(
11

30
R∗R∗ − 3

5
C2
µνρσ +

5

3
g21B

2
µν + g22(W i

µν)2 + g23(V a
µν)2

+
1

6
aRH̄H + b(H̄H)2 + a|∇µH|2 + 2eH̄Hσ2 +

1

2
dσ4 +

1

12
cRσ2 +

1

2
c(∂µσ)2

)
+O(Λ−2),

(31)

where coefficients fk defined by f4−k :=
∫∞
0 t4−k−1f(t)dt, for 0 ≤ k < 4. The quantity

R∗R∗ := C2
µνρσ − 2(R2

µν − 1
3R

2) is called a Gauss-Bonnet term. The integration of this
term is the Euler characteristic which is a constant if the manifold does not change
its topology. The tensor Cµνρσ is Weyl tensor, which will be our main interest in the
following sections, and Bµν ,W

i
µν , V

a
µν are field strength tensor of UY (1), SU(2) and SU(3)

gauge fields respectively. The field H is the SU(2) doublet or the Higgs-Englert field
and σ is the singlet scalar field. Finally, the constants

b = tr
(

(k∗νkν)2 + (k∗eke)2 + 3
(

(k∗uku)2 + (k∗dkd)2
))

,

d = tr
(
(k∗νRkνR)2

)
,

e = tr
(
k∗νkνk∗νRkνR

)
, (32)

are computed from Yukawa matrices. This asymptotic expansion only valid for compact
boundary less manifold. For the case of compact manifold with boundary the action are
more complicated [3]. Note that, this action is asymptotically expanded in the Euclidean
signature manifold, one needs to perform Wick rotation to get the action in Minkowski
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signature manifold (space-time). This transition between Euclidean spectral triple and
Lorentzian spectral triple via Wick rotation was discussed in [5].
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